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Abstract—This paper deals with the modeling of the mag-
netoelectric effect in composite material. This work focuses on
the modeling of a magnetoelectric bilayer using a full 2D finite
element model. Thanks to this model, the magnetic induction
in the direction normal to the plan - neglected in other 2D
formulations - can be investigated.

I. I NTRODUCTION

The magnetoelectric (ME) phenomenon consists in the exis-
tence of a magnetization induced by an electric polarization, or
conversely an electric polarization induced by a magnetization.
In this paper, we focus on the modeling of magneto-electric
laminate composites using two-dimensional finite element
method. The magneto-electric laminate composite consists
in layered piezoelectric and magnetostrictive materials that
produces the ME effect through an elastic interaction. Previous
papers have described different formulations for magnetoelec-
tric effect for two dimensional problems: The use of electric
and magnetic scalar potentials has been proposed by Liuet al.
[1]. Galopinet al. [2] take electric scalar and magnetic vector
potentials as variables. In the harmonic case, the ME effectis
modified because of the resonance of the mechanical structure
[3] and the appearance of electromagnetic coupling based on
Maxwell equations. In order to maintain an electric scalar
potential formulation, the assumption of no magnetic induction
in the direction normal to the working plane (z-direction)
is made. This assumption has to be justified because of the
presence of electric field in piezoelectric element creating a
magnetic induction alongz-direction.
The aim of this paper is to build a full 2D finite element
formulation taking into account the electromagnetic coupling
effect in order to discuss the classical model using magnetic
and electric potentials.

II. CONSTITUTIVE LAWS

The working plane is defined on thexy-cordinates plane,
z-direction is normal to the working plane. In the formulation,
we denote byT the stress tensor,S the strain tensor,u the
displacement,E the electric field,D the electric flux density,σ
the electric conductivity,H the magnetic field,B the magnetic
induction. We notẽX(̃a, b̃) the small variation of X around a
polarization point X0(a0, b0):

X̃ =
∂X

∂a
(a0, b0)ã +

∂X

∂b
(a0, b0)̃b X = X0 + X̃ (1)

A. Linearization of magnetostrictive and piezoelectric coeffi-
cients

1) Magnetostrictive coefficients:We assume that the mag-
netostriction phenomenon is isochoric and isotropic, and that

the magnetostriction strainsµ can be expressed as a parabolic
function of the magnetic induction.We can then write [2]:

s
µ
ij =

β

2
(3bibj − δijbkbk) (2)

whereδij is the Kronecker symbol.
We consider that the polarization due to the applied static
magnetic induction is alongx-axis, thus the variation of
magnetostrictive strain imposed by the variation of magnetic
inductionB (B = B0x + B̃) can be calculated as:

s̃µ
vec = B0β0

(
2b̃x −b̃x −b̃x 0 3b̃z 3b̃y

)t

(3)

wheresvec denotes the Voigt notation of the strains:
svec =

(
s11 s22 s33 2s23 2s31 2s12

)t

2) Piezoelectric coefficients:We consider that the polar-
ization of the piezoelectric element is alongy-axis, a similar
expression of piezoelectric strainsp imposed by the variation
of electric displacement fieldD (D = D0y + D̃) can be
deduced:

s̃p
vec = D0α0

(
−d̃y 2d̃y −d̃y 3d̃z 0 3d̃x

)t

(4)

B. Mechanical assumptions

Using Lamé coefficientsµ∗ andλ∗ in the case of isotropic
material, the total stresst is expressed by:

t = 2µ∗se + λ∗tr(se) I (5)

wherese = s− sc is the elastic strain,sc = sµ in the magne-
tostrictive material (MM),sc = sp in the piezoelectric material
(PM). I is the identity second order tensor. In this paper we
consider plane stress conditions (t31 = t32 = t33 = 0) leading
to the following relations:





se
31

= se
32

= 0

se
33

=
λ∗

2µ∗ + λ∗
(se

11
+ se

22
)

(6)

From equations (3), (4) and (6), the stress alongz-direction
can be calculated from the stress in the working plane:

s31 =





0 in PM
3

2
B0β0bz in MM

s32 =





3

2
D0α0dz in PM

0 in MM

s33 =
λ∗

2µ∗ + λ∗
(s11 + s22) −

2µ∗

2µ∗ + λ∗
Gṽ

(7)

whereG = D0α0, ṽ = d̃y in PM, G = B0β0, ṽ = b̃x in MM.
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C. Constitutive laws

ConsideringS, D andB as state variables, at a polarization
point of PM or MM, using the thermodynamical approach
[4], and calculating the differentials of Hooke’s law [5], the
linearized forms of the constitutive laws of PM and MM are
defined in 3D as:

t̃ij = Cijkl s̃kl − γijk ṽk

r̃i = −γijk s̃jk + τij ṽj
(8)

whereCijkl is the stiffness tensor.
In MM: γ = β the magnetostrictive coupling matrix,τ = νeff
with νeff the effective reluctivity,̃v = b̃, r̃ = h̃.
In PM: γ = α the piezoelectric coupling matrix,τ = ǫ−1

eff
with ǫeff the effective permittivity,̃v = d̃, r̃ = ẽ.
The constitutive laws presented in equation (8) can be simpli-
fied in the case of 2D. From equations (3), (4), the coupling
matricesα and β can be deduced fromα0, β0, D0 and B0

depending on the polarization points. From the mechanical
assumptions (equation (7)), mechanical unknows alongz can
be calculated afterwards from mechanical unknows inxy-
plane. Consequently, from equation (8),E and H can be
calculated separately inxy-plane (�) and alongz (⊥):

ẽ⊥ = ǫ−1

⊥
d̃⊥ h̃⊥ = ν⊥b̃⊥

Ẽ� = ǫ−1

� D̃� − α�S̃� H̃� = ν�B̃� − β�S̃�

T̃� = C�S̃� − α�D̃� T̃� = C�S̃� − β�B̃�

(9)

whereǫ⊥ andν⊥ are the equivalent permittivity and reluctivity
alongz-axis.

III. F INITE ELEMENT FORMULATION

A. Electromagnetic equations

3D magnetoelectric coupling problems are governed by
Maxwell equations:

rotE = −∂tB rotH = σE + ∂tD (10)

In a 2D harmonic problem,E andH do not depend onz, thus
each equation (10) can be divided into 2 equations:

r∗grade⊥ = −jωB� r∗gradh⊥ = σE� + jωD�

div(r∗E�) = −jωb⊥ div(r∗H�) = σe⊥ + jωd⊥
(11)

wherer∗ is defined asr∗ =

(
0 1
−1 0

)

Noting a∗ = −
e⊥

jω
andt∗ =

h⊥

jω
, I the indentity matrix, using

the constitutive laws (9), the system to be solved is:

div(r∗(ǫ� +
σ

jω
I)−1r∗gradt∗ − r∗αt

�S�) = ω2ν−1

⊥
t∗

div(r∗ν�r∗grada∗
− r∗βt

�S�) = (−jωσ + ω2ǫ⊥)a∗

(12)

B. Mechanical equation

The mechanical equilibrium reads:divT = −f . From
equation (9) and (11) the mechanical equation to be solved
in 2D problem is:

div(C�S� − α�r∗gradt∗) = −f (PM)
div(C�S� − β�r∗grada∗) = −f (MM)

(13)

As S� =
1

2
(gradu� + tgradu�), the variables of the system

to be solved areu�, t∗, a∗. Compared to the formulation using
u�, the electric and magnetic potentials (V , a or T ), the new
formulation takes the same computation cost: 4 unknowns per
node. Moreover, to deal with the electrodes on PM, we need
a further processing to be detailed in the full paper.

IV. N UMERICAL EXAMPLE & CONCLUSION

In this section, we study a ME bilayer (Figure 1) pre-
polarized by a static magnetic fieldHdc. An harmonic mag-
netic fieldhac is applied in order to obtain an electric voltage
vac. This configuration corresponds to a magnetic sensor [6].

Magnetostrictive layer PZT

P

Hdc

NS

hac

10 mm
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1 mm

vac

σ εµ εµ0 0

Fig. 1. Magnetoelectric bilayer

As the MM is an electrical conductor, the working frequency
is 100 kHz in order to observe the skin effect. The skin depth
theoretically calculated is about 0.25 mm.
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Fig. 2. Magnetic inductionB� in xy-plane: Vector and Value

We observe also the electric field in PM related to the
magnetic induction alongz-direction according to Faraday’s
law (Figure 3).
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Fig. 3. Electric fieldE� in xy-plane vs Magnetic inductionBz in z

The result in Figure 3 confirms the existence of a magnetic
induction alongz-axis in PM. Nevertheless, its value in that
case is negligible compared to the magnetic induction inxy-
plane. Considering no magnetic induction alongz-axis is there-
fore a justified assumption. The new formulation justifies the
use of the classical formulation. It needs the same computation
cost and gives more accurate results. This new formulation will
be used for the comparison with a 3D-formulation in progress.
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